The properties of the fuzzy integrable function space of fuzzy integral 模糊积分意义下的可积函数空间的若干性质
The conditions of term by term integration sequence of integrable functions on infinite interval 无穷区间上可积函数列逐项积分的条件
This paper describes the feature of riemann integratiable function , and point out that the space of riemann integratiable function is not perfect under the meaning of lebesgue integral 摘要综述了黎曼可积函数的基本特征,并指出黎曼可积函数列的极限运算在积分意义下是不封闭的。
Based on this result , convergence of gaussian quadrature formulas for riemann - stieltjes integrable functions on an arbitrary system of nodes on infinite intervals is discussed 应用这个结果,我们讨论了关于riemann - stieltjes可积函数f ( x )基于无限区间上的任意节点系的gauss求积公式的收敛性。
After constrcting the perfective space , prove that this space is just the space of lebesgue integratiable function , thus explain that lebesgue integral is the form of the perfective riemann integral 在构造了完备化空间之后,证明了该空间就是勒贝格可积函数空间,从而说明了黎曼积分的完备化形式是勒贝格积分。
As an application of the main result , we consider the ivp of infinite system for nonlinear impulsive intgro - differential equations in banach spaces . the main theorernes are as follows : lemma ( comparison result ) assume that sat isfies m ( t ) , n ( t ) are bounded integrable nonnagtive functions , are constants and then p ( t ) , for t j . let us list some conditions 5 )则尸川0 , vtej为了方便叙述,列出本文用到的一些假设:大)存在, ,口e c ‘卜厂卜0 ,句是1丫p的上下解,即: ( )存在有界习负可积函数川大) 、