Using a different method from [ 1 ] , we extend the result in [ 1 ] in two ways : the order of the matrices is extended from 2 to that of arbitrary , the base field of the matrices is extended from q to any linerable fields of characteristic not 2 摘要用与[ 1 ]不同的方法,把文[ 1 ]的结论作两方面的推广,其一是把矩阵的阶数从2推广到任意,其二是把有理数域推广到任意特征不是2的可线性化的域。
矩阵: matrix; array的: 4次方是 The fourth power of 2 i ...阶: steps; stairs矩阵的阶数: order of a matrix矩阵的: lr-zerlegung lu decomposition(矩阵的)平移: translate(矩阵的)缩放: scaling(矩阵的)旋转: rotation矩阵的乘法: multiplication of matrices矩阵的范数: norm of a matrix; norm of matrix矩阵的分块: partitioning of matrix矩阵的积分: integration of a matrix矩阵的迹: diagonal sum; matrix trace; spur of matrix; trace of a matrix; trace of matrix矩阵的列和: column sum of a matrix矩阵的逆: inverse of a matrix矩阵的特盏: characteristic value; eigenvalue矩阵的微分: differentiation of a matrix矩阵的相合: congruence of matrices矩阵的相减: subtraction of matrix矩阵的行和: row sum of a matrix矩阵的元: element of matrix; entry of a matrix; entry of matrix矩阵的直积: direct product of matrixes矩阵的秩: rank (linear algebra); rank of a matrix; rank of matrix矩阵的转置: transpose of a matrix奇矩阵的: singular