Theorem 2 . 5 let g be an infinite simple group that satisfies maximal condition . g is an inner - finite group and each non - trivial proper subgroup of g is abelian if and only if for each x in g , cg ( x ) is the only maximal subgroup that contain x . s * ( a * , c * ) - groups can be regarded as a generalizations of dedekind groups , since all of dedekind groups are s * ( a * , c * ) - groups 5设g是满足极大条件的无限单群,则g是内有限群,而且g的每个非平凡真子群是阿贝尔群的充分必要条件是对g的任意非平凡元x ,有c _ g ( x )是g的含x的唯一极大子群且c _ g ( x )是有限的。
条件: condition; term; factor二次极大条件: second order maximum condition; second-order maximum condition弱最大条件: weak maximal condition最大条件: maximal condition大条: daijo; ojo极大j条件: maximum j condition条件极大: maximum of condition; maximum with co traints; maximum with constraints极大或极小条件: maximum or minimum condition西大条: nishidaijo; nishioeda; nishioida; nishitaijo极大: enormousmaximum; huge --; maximal; maximize; maximum大条银块: bar silver长极大: supermaximum次极大: secondary maximum负极大: negative maximum极大波: maximum wave极大带: maximal strip极大的: a world of; enormous; galactic; immense; incomputable; infinite; maximal; maximum; measureless; mighty; swingeing; towering; tremendous a. very great in size, amount, or degree; unbounded极大地: enormously; overwhelmingly极大点: maximal point; maximalpoint; maximum point极大功: maximum work极大化: maximize; profit maximization极大权: maximal weight极大项: maximum term; maxterm极大性: maximality极大元: maximal element; maximal member