There is also a comprehensive treatment of optimality conditions , lagrange multiplier theory , and duality theory 这门课程也包括了对最适化条件,拉格朗日乘数理论,和对偶理论的综合论述。
By using the lagrange multiplier approach , the design procedure is formulated as solving the linear equation iteratively to obtain the desirable prototype filter coefficient vector 使用拉格朗日乘数方法,算法通过迭代求解线性方程来获得期望的原型滤波器系数矢量。
The conclusion that a set of extremum questions can not be solved by lagrange - multiplication is explained through analysising the extremum questions under linear target functions and linear constrained conditions 摘要通过对线性的目标函数在线性的约束条件下的极值问题的分析,得到这类极值问题一般是不能用拉格朗日乘数法求解。
This optimizing method had been used successfully in full - scale aircraft testing . 6 ) in the global equilibrating , a modified lagrange multiplier method had bring forward . this method can solve inequality constrained optimizer problems 在整体平衡中,提出了改进的拉格朗日乘数法,成功地解决了含不等式约束条件的优化问题,该方法具有计算简单,收敛速度快等特点。
Review of linear algebra , applications to networks , structures , and estimation , lagrange multipliers , differential equations of equilibrium , laplace ' s equation and potential flow , boundary - value problems , minimum principles and calculus of variations , fourier series , discrete fourier transform , convolution , applications 线性代数回顾,网络,结构以及估计的应用,拉格朗日乘数,平衡态的微分方程,拉普拉斯方程和势流,边值问题,最小值原理和变分法,傅立叶级数,离散傅立叶变换,卷积,应用。