A semi - analysis method of differential equations with variable coefficients under complicated boundary conditions 复杂边界条件下任意变系数微分方程的半解析方法
Compared with the semi - analytic , ptam is not only much simpler mathematically , but also easier to implement practically 与半解析方法相比,本文方法不仅数学处理上非常简单,而且易于数值实现。
The conventional time difference solutions methods are given . the semi - analytical method for sensitivity analysis is presented 给出基于常规时间差分的求解算法,并讨论灵敏度分析半解析方法。
The general formulation of pti , the substructure method of pti , and the proof of symmetry property of matrix exponential in pti are proposed 接着给出基于常规时间差分的求湃算法,并讨论热传导灵敏度分析的半解析方法。
Comparing with the classic finite element method , wpim belongs to a half analytical method , it is not sensitive to the time step , so this is helpful to improve the computational efficient 与传统的有限元方法相比,本文方法属于半解析方法,对时间步长不敏感,可有效提高计算效率。