Four experiments on the application of sar data to extract forest resource information were carried out : ( l ) use sar data only ; ( 2 ) pca transformation was carried out to tm data , then , the top three pcs were combined with sar magnitude image and sar texture image ; ( 3 ) all tm bands ( tm6 excluded ) and sar data were combined together , and then pc transform were adopted ; ( 4 ) sar data ( 2000 ) were merged with tm 3对sar图像,采用四种方法进行林业信息提取研究:一是单独利用sar图像进行提取,二是取tm图像主成分变换后的前三个分量、两个时相sar图像的灰度图像及纹理图像组合进行提取;三是将tm的6个波段与两个时相的sar图像主成分变换进行提取。
After being enhanced in many ways , the spot panchromatic band were merged with tm 4 , 3 , 7 through five different data fusion algorithms , they were weighing fusion , principal components transform , k - t transform , ihs transform and brovey fusion . and then maximum - likehood classifier was used to have these fusion images classified automatically 在对spot图像进行图像增强后,采用加权融合、 his融合、 brovey融合、主成分变换融合和k - t变换融合等五种方法对tm图像和spot图像进行融合,低分辨率tm图像进行融合的三个波段为tm4 、 3 、 7波段。
On the basis of geometric correction for remote sensing images data , detailed character analysis was conducted for the tm images . several image transformations which are linear scale transformation , ratio processing , principal components transformation , tasseled - cap transformation and minimum noise fraction rotation ( mnf transformation ) were then implemented 在对研究区数据进行几何精校正的基础上,对tm数据进行了详细的特征分析,并对其进行了有利于植被信息提取的几种图像变换:线性拉伸、比值增强、主成分变换、缨帽变换以及最低噪声分离变换( mnf变换) 。
In addition , on the basis of rgb - ihs and principle component analysis , this paper carries out a multi - spectral image merge experiment of cbers - 01 with aster , tm and spot , then makes a comparison on cbers - 01 and tm from the information of brightness , texture and edge , and macro characteristics 基于rgb - ihs变换和主成分变换模式,将cbers - 01与aster 、 tm 、 spot等数据进行多光谱影像融合实验。另外,展开cbers - 01与tm在灰度信息、纹理信息、边缘信息及宏观特点等方面的对比研究。
主: host成分: composition; component part; ...变换: vary; alternate; commutation ...主成分: main constituent; principal constituent第二主成分: second principal component第一主成分: first principal component主成分得分: principal component score主成分定律: theory of dominant constituents主成分分析: chief component analysis; main component analysis; pca = principal components analysis; principal component analysis; principalcomponentanalysis; principle component analysis主成分矿物: essential mineral主分量, 主成分: principal component成分变化: compositional change; compositional variation成分变化图: variation diagram成分变送器: composition deviation transmitter成分变异数: component variance等成分变化: congruent transformation同成分变化: congruent transformation部分变换式: partial transform积分变换: integral transformation积分变换法: integral transform method; integral-transform method一阶分变换: first difference transformation主成分回归法 主成分回归法: method, principal component regression主成分,基本金属: primary coil主成分分析法: principal component analysis (pca); principal period of calorimetric test主成分回归法: method principal component regression