Demonstration of transformation formulae of triple integral 三重积分变换公式的证明
When a solid region in three - space has an axis of symmetry , the evaluation of triple integrals overis often facilitated by using cylindrical coordinates 当空间立体区域有一个对称轴时,计算上的三重积分通常使用柱坐标比较容易
When a solid regionin three - space is symmetric with respect to a point , the evaluation of triple integrals over is often facilitated by using spherical coordinates 当空间立体区域关于某个点对称时,计算上的三重积分通常使用球坐标比较容易。
The volume integrals can be transformed to surface integrals using gauss ' s theorem . two cases are studied , one is floating upright and another is free floating in 3d space 运用gauss定理,关于空间封闭区域的三重积分可以转化为沿封闭边界曲摘要面的二重积分。
An integral property and its physical significance of difinite integral , double & triple integral , curve and curved surface integral of generalized odd and even functions are demonstrated , which are symmetrical about plane , line and point in the domain 论述了关于面、线、点对称的区域上的广义奇、偶函数的定积分、二重、三重积分、曲线、曲面积分的一个性质及其物理意义。