maximal subgroup造句
例句与造句
- let g be a finite group . suppose p1 is semi-normal or c-normal in g for every sylow subgroup p of g and every maximal subgroup p1 of p, then g is supersolvable
若群g的每个sylow子群的极大子群在g中或半正规或c-正规,则g超可解 - and h k is contained in hg, where hg, is the maximal normal subgroup of g and used c-normality of maximal subgroups to determine the structures of some finite groups
)h~x是包含在h中的g的最大正规子群。并利用极大子群的c-正规性确定了一些有限群的性质和结构。 - in the paper, we make a study of the solvability, supersolvability of the group, with the aid of o-pairs of less maximal subguoups . especially we define some sets of special maximal subgroups
在本文中,我们通过较少的极大子群的-偶,讨论群的可解性、超可解性 - if there exists a sylow 2-subgroup p of g such that p is s-normal in g, then g is solvable . in 3, we determine the structures of some groups by using s-normality of maximal subgroups
在3中我们讨论极大子群的s-正规性对群的结构的影响,主要结果有1)设n为群g的非平凡正规子群。 - there are the main theorems that l ) let n be a nontrivial normal subgroup of a group g . then n is solvable if and only if every maximal subgroup of g not containing n is s-normal in g; 2 ) let g be a finite group
则n可解当且仅当g的每一个不包含n的极大子群均s-正规于g;2)设g为有限群。 - It's difficult to find maximal subgroup in a sentence. 用maximal subgroup造句挺难的
- some results are the following : ( 1 ) letg be a finite group having two maximal subgroups that are solvable and not conjugate ing . if the maximal subgroups are weakly quasinormal ing, then g is solvable
本文主要获得了下列结论:(1)若群g有两个不共轭的可解极大子群均在g中弱拟正规,则g可解。 - some results are the following : ( 1 ) letg be a finite group having two maximal subgroups that are solvable and not conjugate ing . if the maximal subgroups are weakly quasinormal ing, then g is solvable
本文主要获得了下列结论:(1)若群g有两个不共轭的可解极大子群均在g中弱拟正规,则g可解。 - (7 ) assume thatg has two nilpotent maximal subgroups not conjugate ing, which are weakly quasinormal ing, then g is nilpotent if and only if g has no section isomorphic to d, where d is identical with one in ( 6 )
(7)若群g存在两个不共轭的幂零极大子群均在g中弱拟正规,则g幂零当且仅当g与d型群无关,其中d型群的定义同(6)中d型群的定义。 - for example, fs ( g ) notes the set that does not contain solvable residue; a ( g ) is the set that does not contain supersolvable residue, and normal indexes of maximal subgroups have not square divisors, and so on
同时,定义了几类特殊的极大子群的集合,例如,不包含可解剩余的f_s(g),以及不包含超可解剩余且正规指数含有平方因子的(g)等 - in this paper, one type of maximal subgroups in symplectic groups over polynomial rings, one type of maximal subgroups in symplectic groups over local rings, are obtained . in this paper, we also determine all the overgroups of sp ( 2m, r ) in gl ( 2m, r ) for r a local ring
本文主要研究了多项式环上辛群的一类子群的极大性,局部环上辛群的一类子群的极大性和局部环上辛群在线性群中的扩群 - in this paper, one type of maximal subgroups in symplectic groups over polynomial rings, one type of maximal subgroups in symplectic groups over local rings, are obtained . in this paper, we also determine all the overgroups of sp ( 2m, r ) in gl ( 2m, r ) for r a local ring
本文主要研究了多项式环上辛群的一类子群的极大性,局部环上辛群的一类子群的极大性和局部环上辛群在线性群中的扩群 - in addition, we make combination with conditions of o-pairs for maximal subgroups, or combine conditions of o-pairs for maximal subgroups with seminormal, which prove the solvability or supersolvability of the group g . so our results generalize some given conclusions
另外,我们把极大子群的-偶的条件互相结合,或者与半正规的条件结合起来,证明群的可解性、超可解性,从而推广某些已知的结果 - in addition, we make combination with conditions of o-pairs for maximal subgroups, or combine conditions of o-pairs for maximal subgroups with seminormal, which prove the solvability or supersolvability of the group g . so our results generalize some given conclusions
另外,我们把极大子群的-偶的条件互相结合,或者与半正规的条件结合起来,证明群的可解性、超可解性,从而推广某些已知的结果 - in chapter 2, one type of maximal subgroups in symplectic groups over local rings are obtained . let r be a local ring and char r 2, mbea positive integer, s be the unique maximal ideal of r, we define . then g ( s ) is a maximal subgroups of sp ( 2m, r )
在第二章中,得到了局部环上辛群的一类极大子群:设r是一个特征不为2的局部环,m是个正整数,s是r的唯一极大理想,则g(s)是sp(2m,r)的一个极大子群。 - in chapter 2, one type of maximal subgroups in symplectic groups over local rings are obtained . let r be a local ring and char r 2, mbea positive integer, s be the unique maximal ideal of r, we define . then g ( s ) is a maximal subgroups of sp ( 2m, r )
在第二章中,得到了局部环上辛群的一类极大子群:设r是一个特征不为2的局部环,m是个正整数,s是r的唯一极大理想,则g(s)是sp(2m,r)的一个极大子群。