linear operator造句
例句与造句
- On the finite - dimensional optimal approximations to the infinite - dimensional linear operators
关于无穷维算子的有限维最佳逼近 - Oint linear operator
伴随线性算子 - Closed linear operator
闭线性算子 - And also we characterize the linear operators that strongly preserve commuting pairs of matrices over boolean algebras
同时也刻画了布尔代数上强保持交换矩阵对的线性算子 - Among these works , the linear operators concerned are linear operators on matrix spaces over some fields or rings
在这些工作里我们看到所涉及到的线性算子主要是在域或环上的矩阵空间上的线性算子 - It's difficult to find linear operator in a sentence. 用linear operator造句挺难的
- In the same way as above , we characterize linear operators that strongly preserve commuting pairs of matrices over general boolean algebras
利用和上述同样的方法,我们刻画了在一般布尔代数上强保持交换矩阵对的线性算子 - Among others , we get the results : ( i ) besselian frame is still the same kind suppose it is acted by a bound linear operator
在各种含riesz基框架的相互关系中得到: ( i ) riesz基是riesz框架,同时也是besselian框架,反之不成立 - The laplacian on riemannian manifolds is an essential linear operator , and it is also the main object to be studied of geometric analysis on manifolds
Riemann流形上的laplace算子是一个重要的线性算子,也是流形上几何分析研究的主要对象之一。 - Linear preserver problem ( lpp for short ) concerns the characterization of linear operators on matrix spaces that leave certain functions , subsets , relations , etc . , invariant
线性保持问题(简称lpp )刻画在矩阵空间上保持特定的函数,子集,关系等不变的线性算子 - In order to characterize the linear operators that strongly preserve nilpotence and that strongly preserve invertibility , we first study the case of the binary boolean algebra
为了刻画强保持幂零的线性算子和强保持可逆的线性算子,我们首先研究二元布尔代数上的情况 - In this paper , we characterize the linear operators preserving adjoint matrices on the spaces of all matrices , symmetric matrices and upper triangular matrices over domain
摘要木文刻画了整环上的全矩阵空间、对称矩阵空间和上三角矩阵空间上保持伴随矩阵的线性算子的结构。 - By the means of the extension of linear operator , we characterize the linear operators that strongly preserve nilpotence and that strongly preserve invertibility over any boolean algebra
再利用线性扩张这一工具,我们刻画了在一般布尔代数上强保持幂零的线性算子和强保持可逆的线性算子 - In two part we give out the definition of multivalued linear operators and their basic properties and examine degenerate a - times integrated c - semigroups and its some basic properties
第二章我们给出了多值算子的定义与基本性质,主要研究了退化-次积分正则半群,并证明了它的一些基本性质。 - In this paper , we shall characterize the linear operators that strongly preserve nilpotent matrices and that strongly preserve invertible matrices over boolean algebras and antinegative semirings without zero divisors
本文将刻画在布尔代数和非负无零因子半环上强保持幂零矩阵和可逆矩阵的线性算子 - In first part we give out the definition of multivalued linear operators and their basic properties and investigate degenerate a - times integrated semigroups and prove its some basic properties
第一章我们首先给出了多值算子的定义与基本性质,主要研究了退化-次积分半群,并证明了它的一些基本性质。