×

实数理论造句

例句与造句

  1. 但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。
  2. 在一般的数学分析学教材中,实数理论一章,为了说明实数的连续性,有一系列的定理,理论比较严密的前苏联教材一般是以戴德金分割定理为出发点证明其它的等价定理。
  3. 这些定义,从不同的侧面深刻揭示了无理数的本质,从而建立了严格的实数理论,彻底消除了希帕索斯悖论,把极限理论建立在严格的实数理论的基础上,并进而导致集合论的诞生。
  4. 他在严格的逻辑基础上建立了实数理论,用单调有界序列来定义无理数,给出了数集的上、下极限,极限点和连续函数等严格定义,还在1861年构造了一个著名的处处不可微的连续函数,为分析学的算术化做出重要贡献。
  5. 直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。
  6. 实数理论造句挺难的,這是一个万能造句的方法
  7. 本书着重阐明微积分中的各主要问题、基本思想,包括实数理论,极限论、连续性概念、微积分主题浅释、微商与微分、黎曼积分及其推广、函数级数、非标准分析大意、数学研究中的创造性思维规律、数学科学与现代文明等。
  8. 之前首次给出了连续性和导数的恰当的定义;对序列和级数的收敛性提出了正确的概念;首次运用与实数理论有关的原理:如果性质不是对变量所有的值成立,而对小于某个的所有的值成立,则必存在一个量,它是使不成立的所有(非空)集的最大下界。
  9. 他在《纯粹分析的证明》(1817)中对函数性质进行了仔细分析,在A.-L.柯西之前首次给出了连续性和导数的恰当的定义;对序列和级数的收敛性提出了正确的概念;首次运用与实数理论有关的原理:如果性质不是对变量所有的值成立,而对小于某个的所有的值成立,则必存在一个量,它是使不成立的所有(非空)集的最大下界。
  10. 数学方法对于数学的发展起着关键性的推动作用,许多比较困难的重大问题的解决,往往取决于数学概念和数学方法上的突破,如历史上古希腊三大尺规作图难题,就是笛卡尔创立解析几何之后,数学家们借助解析几何,采用了RMI(关系??映射??反演)方法,才得到彻底的解决;这又启发了后来的数学家们采用类似的办法解决了欧氏几何与实数理论的相对相容性问题。
  11. 更多例句:  上一页  

相邻词汇

  1. "实数根"造句
  2. "实数集"造句
  3. "实数加"造句
  4. "实数空间"造句
  5. "实数类型"造句
  6. "实数连续统"造句
  7. "实数连续性定理"造句
  8. "实数论"造句
  9. "实数系"造句
  10. "实数线"造句
桌面版繁體版English日本語

Copyright © 2025 WordTech Co.

Last modified time:Thu, 14 Aug 2025 00:29:56 GMT