Some < equipment > validation protocols written by the supplier can be used and the others shall be prepared probably by the final user 翻译:一些验证方案(主要是设备)可由供应商提供,而其余文件必须有最终用户完成。
Mathematic mesh is composed of folded covers and could be random set by final user , and physical mesh is composed of real material boundary , joints or discontinuities , phase interfaces etc and could n ' t be artifical 数学网格由折叠的覆盖组成,物理网格则由实际的材料边界、裂缝、块体、不同材料的交接面甚至不同的材料相的界面等组成。
From the experiment results we conclude that after using our strategy to study user ' s interests , final user ' s model is better and higher in integration , accuracy and speed to the desired goal than young - woo seo in seoul national university did 最后我们做了一个的实验,结果发现:在使用木论文的学习策略学习用户兴趣后,得到的用户模型在整体性、精确性和逼近目标的速度_ l二都高于汉城国际大学的young一w 。 。 seo在2000年提出的学习用户模型的策略。
The chapter 4 recommends how to launch a network auto store and build the b to c electronic commercial platform facing the final users . the chapter 5 analyzes how to make use of distribution management system to transform original marking methods 第四章介绍了企业如何开办网上汽车商店,建立面向最终用户的btoc电子商务平台;第五章分析如何利用分销计划管理系统,对企业原有的销售渠道进行信息化改造;第六章介绍了企业应如何建立网络时代的客户管理系统。
In our work here , a model of data mining was developed , which got its foundation from artificial neural networks . hi fact , this kind of model might be called an infant protocol for dss ( decision support system ) , which accepts final users " raw data , integrates various sources of data , cleanses them from garbages , then normalizes them into an intermediatary data file . from this temporary data file , the dss model can now make a conclusion , which is a fuzzy set . to do this , we introduce a kind of ann models called bp network , which classifies the records from the normalized data file . in the model . we put our main emphasis on bp network and its training algorithm . ann has been a branch of ai , and it has some kind of intelligence of human beings , as to memorization and reasoning 我们实现的模型是一个有机的数据处理和决策综合系统,首先,模型接受用户在通常的mis系统中积累产生的各种数据,对这些原始的, “粗糙”的数据,我们第一步的工作是对他们进行预处理,这个过程其实相当的复杂棘手,最典型的,它首先要集成来自不同数据源的数据,其次,它要能够对这种数据进行清洗,除去我们不感兴趣的脏数据,最后,它还要对数据进行重新的解释,处理数据的规范化,一致化等问题。在进行了必要的数据预处理之后,我们就可以对这种合适的数据进行决策分类了。