We get the perturbed system equivalent to the pseudo - symplectic numerical scheme by use of backward error analysis , and prove that this perturbed system is hamiltonian when truncating with less order than pseudo - symplectic order 利用向后误差分析的方法,得出拟辛数值方法所对应的扰动系统,证明了此扰动系统在小于拟辛阶的截断时,是一hamilton系统。
The backward error and the structured backward error of the approximate solution are the criteria to judge the stability and the strong stability of the numerical algorithm . condition number is a measure of the sensitivity to the approximate solution for the perturbation of original date 近似解的最佳向后误差和最佳结构向后误差的数值分别是判别算法的稳定性和强稳定性的标准,而条件数则是反映数值问题的解对于该问题数据扰动的敏感程度。