A block design is a triple d = ( x , b , i ) , where x is a finite set ( the point set ) of order v , b is the block set and / is the incidence relation between x and b . for the given block design d , if all the blocks from x , which have the same type of the blocks in b , can be partitioned into some bi , such that each ( x , bi , i ) is a block design with the same parameters and the same type as d , then { ( x , bi , i ) } i is called as large set of d - design of order v . on the other side , let | x | = v , | y | = v + 1 , and x y , if all the blocks of the same type from y can be partitioned into some bx , such that each ( y { x } , bx , i } is a block design of order v for any element x y with the same parameters and the same type as d , then { ( y { x } , bx , i ) } x is called an overlarge set of d - design of order v . in this thesis , we discuss the existence problem about some types of large sets and overlarge sets 一个区组设计是由两个有限集合x , b及它们之间的关联关系i组成的,记为d = ( x , b , i ) ,其中x为v元集, b为区组集,对于指定的设计d ,若x上与d相应的全部构形可分拆为若干个b _ i ,使得每个( x , b _ i , i )皆为一个与d同参数同类型设计,则称这些b _ i构成一个v阶d -设计的大集。若v元集x是v + 1元集y的一个子集,而y上与d相应的全部指定构形可分拆为若干个b _ x ,使得每个b _ x恰是y { x }上的一个与d同参数同类型的设计(其中x y ) ,则称这些b _ x构成一个v阶d -设计的超大集。本文中讨论了一些区组设计的大集及超大集。