×

扰动方法的英文

发音:   用"扰动方法"造句

例句与用法

    更多例句:  上一页  
  1. To the first equation , the banach contraction mapping theorem is used to show the local existence of the solutions , we use potintial well method to prove the global existence and the decay rate of the solutions , to the blow - up of the solution we use the energy method
    本文主要采用bananch压缩映射原理来获得解的局部存在性;采用势井方法来获得解的整体存在性和衰减估计;对解的爆破结论的证明主要采用能量方法;对解的能量衰减估计主要采用能量扰动方法
  2. The main contents are as follows : ( 1 ) by employing the direct method , the soliton periodic amplification system in optical fiber link with loss is considered , and the adiabatic solution ( slowly varying portion ) and first - order correction ( rapidly varying portion ) for a single soliton case are presented
    本文的主要内容如下: ( 1 )利用直接扰动方法对周期放大系统进行了理论分析,给出孤子周期放大系统的绝热近似解和一级修正解的积分表达式,结果分析表明孤子在放大过程中一部分能量以色散波的形式流失,而这一色散波主要由孤子周期放大系统的一级修正解来刻画。
  3. Thirdly , we obtain multiplicity of solutions for resonant non - homogeneous boundary perturbations from symmetric problem without parameter by a new perturbation method introduced by bolle in reference [ 4 ] , applied in references [ 5 ] [ 6 ] and extend in reference [ 7 ] . references [ 5 ] [ 6 ] have considered some exceptive case while the section consider general case
    再次,利用bolle在文献[ 4 ]中提出的、被应用于文献[ 5 ] [ 6 ]以及在文献[ 7 ]中被推广的一种新的扰动方法得到问题即不带参数的对称共振非齐次边值扰动问题的多重解,在文献[ 5 ] [ 6 ]中讨论了非线性项为摘要几种特殊情形的情况,此部分讨论非线性项为一般情形的情况
  4. For the model with defined pressure on boundary both inside and outside , the thesis first proofed the discrete numeric solution existence of the general difference equation to the seepage mathematical model by discrete functional analysis ; then it presented a concise and effective numeric solution , predicted - corrected method , and proofed the convergence of it
    ( 2 )对于所建立的数学模型,我们利用线形化和正则扰动方法来求出模型在拉氏空间的近似解析解。由于近似解析解形式的复杂性,这在理论分析和实际应用中都不方便,因而有必要寻求其简洁、高效的数值解法。

相关词汇

相邻词汇

  1. "扰动反馈"英文
  2. "扰动范围"英文
  3. "扰动方差"英文
  4. "扰动方程"英文
  5. "扰动方程式"英文
  6. "扰动飞行"英文
  7. "扰动分辨率"英文
  8. "扰动分辨率,干扰分辨率"英文
  9. "扰动分布"英文
  10. "扰动分析"英文
桌面版繁體版English

相关阅读

Copyright © 2025 WordTech Co.

Last modified time:Tue, 12 Aug 2025 00:29:56 GMT